506 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет теплопотерь через окна

Расчет теплопотерь помещения и требуемого сопротивления теплопередаче наружных ограждающих конструкций при раздельном учете лучистого и конвективного теплообмена

Проведенные исследования показывают, что традиционные расчеты теплопотерь помещения и требуемого сопротивления теплопередаче наружных ограждающих конструкций без раздельного учета лучистого и конвективного теплообмена в помещениях, содержащиеся в существующих нормативных и методических документах, приводят к достаточно значительным расхождениям в расчетах.

В проектной практике довольно часто встречается задача по определению теплопотерь помещения и расчета требуемого сопротивления теплопередаче наружных ограждающих конструкций, в котором одна или несколько поверхностей имеют существенно различные температуры. К таким поверхностям можно отнести угловые помещения с двумя наружными стенами, помещения верхнего этажа с двумя наружными стенами и покрытием, помещения плавательного бассейна и помещения с обогреваемым полом, в которых температура поверхности воды или поверхности пола существенно отличается от температуры внутренних поверхностей наружных ограждений.

Тепловой поток на внутренней поверхности наружной ограждающей конструкции следует рассчитывать по формуле [1, 2], учитывающей конвективную и лучистую составляющие этого теплового потока:

(1)

где a к – коэффициент конвективного теплообмена между внутренней поверхностью наружной ограждающей конструкции и воздухом помещения, Вт/м 2 •°С;

a л – коэффициент лучистого теплообмена между внутренней поверхностью наружной ограждающей конструкции и окружающими поверхностями, Вт/м 2 •°С;

tв, tвп – соответственно температуры внутреннего воздуха и внутренней поверхности наружной ограждающей конструкции, °С;

tокр – температура окружающих поверхностей, °С, вычисляется по формуле:

(2)

где ti, Fi – соответственно температуры, °С, и площади, м 2 , окружающих поверхностей.

Формулу (1) перепишем следующим образом:

(3)

Рассматривая правую часть формулы (3), можно сделать следующие выводы:

1. Если tусл > tв, то теплопотери помещения будут превышать значение, рассчитанное согласно СНиП II-33-75* «Отопление, вентиляция, кондиционирование воздуха», без раздельного учета лучистой и конвективной составляющих теплообмена на внутренней поверхности наружных ограждений.

2. Если tусл 2 •°С/Вт; Rокн – приведенное сопротивление теплопередаче окна, м 2 •°С/Вт; q1ст – тепловой поток через наружную стену при раздельном учете лучистого и конвективного теплообмена, Вт; q1окн – тепловой поток через окно при раздельном учете лучистого и конвективного теплообмена, Вт; q2ст – тепловой поток через наружную стену без раздельного учета лучистого и конвективного теплообмена, Вт; q2окн – тепловой поток через окно без раздельного учета лучистого и конвективного теплообмена, Вт.

Далее рассмотрим влияние раздельного учета лучистого и конвективного теплообмена при расчете сопротивления теплопередаче наружных ограждающих конструкций.

Рассматривалось три типа помещений с системой воздушного отопления, имеющих соответственно одно, два и три наружных ограждения: рядовое – с одной наружной стеной, угловое – с двумя наружными стенами, верхнее угловое – с двумя наружными стенами и покрытием; в каждом из помещений имелось окно (рис. 1).

Схема исследуемого помещения

В процессе расчета варьировались температура наружного воздуха tн от –15 до –25 °С; геометрические параметры помещения: отношение ширины к высоте В/Н – от 1 до 2,5, отношение длины к высоте L/Н – от 1 до 2,5; относительная площадь остекления наружной стены fост. = Fок / BH – от 0,3 до 0,7 (Fок – площадь окна); приведенный относительный коэффициент излучения между окном и светонепроницаемыми ограждениями e ок пр / e ок пр1 = 0,84; e ок пр2 = 0,28.

При анализе полученных результатов выявлено, что соотношения геометрических размеров В/Н и L/Н практически не влияют на исследуемые параметры, поэтому при дальнейшем рассмотрении они не учитываются.

При tв = 18 °С и ∆tн = 6 °С температура внутренней поверхности наружного ограждения составляет t ст =12 °С, температура внутренней поверхности покрытия при tв = 18 °С и ∆tн = 4 °С – t пот = 14 °С. Расчетные значения t отличаются от нормативных и в большой степени зависят от типа помещения: в помещении с одним наружным ограждением t ст = 10–10,5 °С, с двумя – t ст = 9,2–9,6 °С, в помещении с двумя наружными стенами и покрытием t ст = 8,7–9,0 °С, t пот = 10,4–11,2 °С.

Естественно, что теплопотери помещения, рассчитанные с учетом конвективной и лучистой составляющих теплообмена, оказались меньше теплопотерь, определенных по СНиП 2.04.05-91*. При увеличении перепада между tв и tвп возросла конвективная составляющая теплообмена, однако лучистая составляющая существенно уменьшилась. Это объясняется тем, что температуры внутренних ограждений не равны температуре воздуха (для различных типов помещения tокр = 12,5 – 15,5 °С) и, кроме того, для помещений с несколькими наружными ограждениями в расчет включались их внутренние поверхности. На рис. 2 показано распределение температуры поверхностей помещений, рассчитанное в соответствии с нормами и при раздельном учете лучистого и конвективного теплообмена, учитывающего разности температур четвертых степеней [3]. Стрелками обозначено направление лучистых потоков. Как видно из рисунка, в реальных условиях происходит перераспределение этих потоков и поверхность потолка может даже отдавать лучистое тепло в помещение.

Распределение температуры поверхностей в помещении, рассчитанное:
а – по СНиП 2.04.05–91*; б – по формулам [2] при В/Н = 1,0; L/Н = 1,5; fост = 0,7; e ок пр = 0,84

Расчетом установлено, что при уменьшении e ок пр с 0,84 до 0,28 температура внутренней поверхности окна снижается на 2–3 °С из-за резкого уменьшения (на 55–60 %) лучистого теплообмена с другими поверхностями помещения, которое не компенсируется увеличением (на 20–30 %) конвективного теплообмена. Вследствие этого снижаются и теплопотери помещения.

В помещениях с наружными ограждающими конструкциями, рассчитанными по СНиП 23-02-2003 (где коэффициент теплоотдачи внутренней поверхности принят постоянным), не обеспечивается нормативный санитарно-гигиенический перепад между температурами воздуха и внутренней поверхности наружной стены. Превышение расчетного перепада над нормативным составляет для рядового помещения 25–30 %, углового – 40–45 %, верхнего углового – 50–55 %.

В заключение отметим, что особенно важно раздельно учитывать лучистый и конвективный теплообмен в помещении при определении нагрузки на систему кондиционирования воздуха. Если расчет проводится без такого учета, то полученное значение нагрузки на систему кондиционирования может превышать требуемое в 2–2,5 раза. Рекомендуется производить расчеты в соответствии с рекомендациями АВОК Р НП «АВОК» 5.1-2008 по программе, которая учитывает раздельно лучистый и конвективный теплообмен в помещении.

Литература

1. Богословский В. Н. Строительная теплотехника. – М. : Высшая школа, 1982.

2. Табунщиков Ю. А. Математическое моделирование и оптимизация тепловой эффективности зданий. – М. : АВОК-ПРЕСС, 2002.

3. Табунщиков Ю. А., Климовицкий М. С. Расчет теплового режима помещения при раздельном учете конвективной и лучистой составляющих теплообмена / Сборник трудов НИИСФ «Тепловой режим и долговечность зданий», 1987.

Руководство по расчету теплопотребления эксплуатируемых жилых зданий

Расчёт теплопотерь через окна

В практике строительства жилых и общественных зданий применяется одинарное, двойное и тройное остекление в деревянных, пластмассовых и металлических переплетах, спаренное или раздельное [1].

Требуемое термическое общее сопротивление теплопередачи для световых проёмов определяют по табл. 1.5 в зависимости от величины ГСОП.

Затем по табл. 2.2 в соответствии с конструкцией окна определяют значение фактического приведённого сопротивления . Выбираем наибольшее из значений и .

Таблица 2.2 – Фактическое приведённое сопротивление окон, балконных дверей и фонарей [5]

Заполнение светового проёма Приведённое сопротивление теплопередаче Rо ф , (м 2 ×°С)/Вт
1. Двойное остекление в спаренных переплетах 0,4
2. Двойное остекление в раздельных переплетах 0,44 0,34*
3. Блоки стеклянные пустотные с шириной швов между ними 6 мм, размером, мм:
194´194´98 244´244´98 0,31 (без переплета) 0,33 (без переплета)
4. Профильное стекло коробчатого сечения 0,31 (без переплета)
5. Двойное из органического стекла зенитных фонарей 0,36
6. Тройное из органического стекла зенитных фонарей 0,52
7. Тройное остекление в раздельно-спаренных переплетах 0,55 0,46
8. Однокамерный стеклопакет из стекла:
обычного 0,38 0,34
с твердым селективным покрытием 0,51 0,43
с мягким селективным покрытием 0,56 0,47
9. Двухкамерный стеклопакет из стекла:
обычного (с межстекольным расстоянием 6 мм) 0,51 0,43
обычного (с межстекольным расстоянием 12 мм) 0,54 0,45
с твердым селективным покрытием 0,58 0,48
с мягким селективным покрытием 0,68 0,52
с твердым селективным покрытием и заполнением аргоном 0,65 0,53
10. Обычное стекло и однокамерный стеклопакет в раздельных переплетах из стекла:
обычного 0,56
с твердым селективным покрытием 0,65
с мягким селективным покрытием 0,72
с твердым селективным покрытием и заполнением аргоном 0,69
11. Обычное стекло и двухкамерный стеклопакет в раздельных переплетах из стекла:
обычного 0,68
с твердым селективным покрытием 0,74
с мягким селективным покрытием 0,81
с твердым селективным покрытием и заполнением аргоном 0,82
12. Два однакамерного стеклопакета в спаренных переплетах 0,70
13. Два однакамерного стеклопакета в раздельных переплетах 0,74
14. Четырехслойное остекление в двух спаренных переплетах 0,80
* В стальных переплетах. Примечания. 1. К мягким селективным покрытиям стекла относят покрытия с тепловой эмиссией менее 0,15, к твердым – более 0,15. Значения приведённых сопротивлений теплопередаче заполнений световых проёмов даны для случаев, когда отношение площади остекления к площади заполнения светового проёма равно 0,75. 2. Значения приведённых сопротивлений теплопередаче, указанных в таблице, допускается применять в качестве расчётных при отсутствии этих значений в стандартах или технических условиях на конструкции или не подтвержденных результатами испытаний. 3. Температура внутренней поверхности конструктивных элементов окон зданий (кроме производственных) должна быть не ниже 3 °С при расчётной температуре наружного воздуха.

Пример 2.4.

– район строительства – г. Липецк;

– расчётная температура внутреннего воздуха °С;

°С; = 202 сут.; = -3,4 °С; n = 1;

– окна с двойным остеклением в спаренных переплетах из ПВХ.

Порядок расчёта.

1. По формуле (1.4) определяем ГСОП:

°С·сут.

2. По табл. 1.5 интерполированием определяем для окон
(м 2 ∙ºС)/Вт.

3. По табл. 2.2 = 0,4 (м 2 ∙ºС)/Вт.

4. Т.к. > (0,47>0,4), то для дальнейших расчётов используем (м 2 ∙ºС)/Вт.

5. Площадь окна м 2 .

6. Определяем теплопотери через окно по формуле (2.1):

Вт.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Расчёт теплопотерь дома

Из статьи Теплопотери теперь мы знаем, что такое теплопотери. А как правильно посчитать теплопотери при проектировании отопления? Сколько секций радиатора необходимо установить в помещение?

Теплопотери через ограждающие конструкции складываются из теплопотерь через отдельные ограждения или части из площади. Теплопотери через внутренние ограждения в прилегающие помещения, имеющие пониженную температуру, допустимо не учитывать при разности температур не более 3С.

Зная площадь стен, окон, дверей, пола и потолка, а также их конструкцию, мы можем посчитать теплопотери через каждый элемент. Сложив результат получим общие теплопотери помещения.

Для примера рассчитаем теплопотери кухни в коттедже:

Кухня имеет площадь 15,1м2. Но нас интересует площадь ограждающих конструкций.

Для расчёта примем, что стена кухни с большим окном находится с северной стороны.

В расчётах допускается округлять значения до десятков Вт.

Площадь северной стены: (Длина)5,34м x (Высота)3,3м = 17,62 м2.

Обмер помещение производится по внешней стороне. Если часть стены приходится на угол, то учитывается вся длинна стены. Если стена смежная, то берём половину толщины стены.

Площадь проёма окна: 1,8 х 2,0 = 3,6 м2.

Т.к. нас интересует площадь именно стены, то вычитаем площадь окна: 17,62-3,6=14,02м2.

Площадь восточной стены: 3,1м x 3,3м = 10,23-1,8 = 8,43м2.

Площадь проёма окна: 0,9 х 2,0 = 1,8 м2.

Коэффициенты теплопроводности стен коттеджа высчитываются в зависимости от материалов и толщины стены.

Стен: R=3,29 м2*С/Вт

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт, но

с учётом инфильтрации в коттедже на 1 этаже: 0,25 м2*С/Вт.

Есть несколько методов учёта инфильтрации. Но суть общая: добавляется коэффициент, который зависит от разности давления (на это есть таблицы в разных справочниках и учебниках). Мы на работе пробовали считать разными методами. Цифры в итоге получаются примерно одинаковые. В итоге самый быстрый и простой способ — сразу изменить коэффициент теплопроводности окна.

Для г.Чебоксары температура холодной пятидневки -32С.

Температура помещения кухни: +18С.

Если помещение угловое, то температура внутри помещение для расчёта берётся на 2 градуса больше. (+18+2=+20 градусов)

Разница температур: 52С.

Стена выходит на север, появляется добавочный коэффициент +10%.

В помещение 2 наружные стены +5%

14,02*(1/3,29)*52*1,15=254,83 Вт — теплопотери северной стены.

3,6*(1/0,25)*52*1,15=861,12 Вт — теплопотери окна.

8,43*(1/3,29)*52*1,15=153,23 Вт — теплопотери восточной стены.

1,8*(1/0,25)*52*1,15=430,56 Вт — теплопотери окна.

Если в доме нет подвала и/или этот этаж последний — то необходимо добавить ещё и теплопотери через покрытие пола и/или потолка.

Теплопотери пола считаются по зонам, если пол на земле, расскажу об этом позже.

Сейчас у нас простой пример.

Итого: 1699,74Вт — округлим — 1700Вт — теплопотери кухни.

Обычно к расчётам всегда прибавляют 10-20% — на различные неучтённости: 1700*1.1 = 1870Вт.

Теперь необходимо подобрать отопительное оборудование для кухни.

Более подробно о расчёте теплопотерь вы можете узнать в учебниках.

1. Справочник под ред. Староверова. Отопление. Часть 1.

2. Отопление и Вентиляция. Часть 2. Богословский В.Н.

3. Отопление. Богословский В.Н., Сканави А.Н.

Дубликаты не найдены

=Обычно к расчётам всегда прибавляют 10-20% — на различные неучтённости: 1700*1.1 = 1870Вт.

Скромный личный опыт в строительстве подсказывает, что надо добавлять 30%. Причина: несоответствие заявленных характеристик теплоизолирующих материалов. Такая же петрушка и с теплоотдачей радиаторов.

Согласен. Просто при подборе радиаторов отопления стараюсь учесть реальную теплоотдачу + округление в большую сторону.

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт, но
с учётом инфильтрации в коттедже на 1 этаже: 0,25 м2*С/Вт.

Не имеют современные окна инфильтрации. Совсем не имеют.

Но этим самым мы как раз и учитываем расход тепла на нагрев воздуха. Либо можно тут не учитывать, а рассчитать отдельно расход тепла на нагрев поступающего воздуха из расчёта 3м3 воздуха на 1м2 комнаты.

А не надо учитывать на окнах. Это какой то кривой метод.

Есть вентиляция её и надо считать.

А давай те сравним итоговые цифры. Сделай те ваш расчёт по исходным данным из поста.

Мне тоже действительно интересно.

Вентиляция кухни 90 м3/час 90*1,2*1005*52=1567 Вт/час. Но раскидывать надо на весь дом с учётом кол проживающих и объёма.

Изолированно не учесть.

Я сейчас подставил для окон коэффициент 0,56 — итоговые теплопотери кухни БЕЗ инфильтрации получились = 985Вт

Прибавляем расход на вентиляцию 1567: 985+1567 = 2552Вт.

Т.е. совместными усилиями получаем такую цифру? И она тоже верная.

Но скажите мне, кто в -32 будет открывать окна и форточки для создания положенной вентиляции. И если уменьшить объём вентиляции в половину — 45м3 — то суммарные затраты:

И вот это более «реально-бытовая» цифра на основе моего опыта.

А если устанавливать приточную установку — тогда механическая вентиляция вообще в расчёте не участвует.

Но скажите мне, кто в -32 будет открывать окна и форточки для создания положенной вентиляции.

А откуда вы возьмёте инфильтрацию через пластиковое окно ?

И если уменьшить объём вентиляции в половину — 45м3

Ну как бы нежелательно для кухни, запахи будут.

Доводы ваши верные и с ними согласен. «Возьму на вооружение». Цель моих постов как раз отчасти и в том, что бы ОБСУДИТЬ.

Но откуда то воздух для вытяжки берётся 🙂

В большинстве случаев как раз из неучтённой инфильтрации. Но могу заметить, сейчас её явно не хватает для нормальной вентиляции. И приходится делать приточку.

Приточка в любом случае со своим подогревом, не радиаторы же её нагревают.

Но я не инженер-теплотехник

Потери дома это: теплопотери через конструкции + инфильтрация+ всякое разное+вентиляция.

Инфильтрация в большинстве случаев это очень незначительная величина по сравнению с вентиляцией.

Поэтому её в топку, а считать только потери через конструкции+ всякое разное+вентиляция.

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт

ТС, это не коэффициент теплопроводности.

Коэффициент теплопроводности имеет размерность Вт/(м·K).

В приведённом расчёте ни слова не сказано о зависимости теплопотерь от скорости ветра снаружи (см «роза ветров» и «средняя скорость в течение расчётного периода времени»), а коэффициент теплоотдачи сильно зависит именно что от скорости.

Тоже заметил про коэффициент. Остается добавить только, что в расчете у ТС-а указано термическое сопротивление.

Здравствуйте, строю дом, вы не могли бы помочь? проверить тепло расчет?

Добрый день! Да, с удовольствием помогу. найдите мой блог «Мой ник.ru» там указаны контакты. Свяжитесь со мной.

А видели такой ресурс? Как его подсчеты?

а вот интересно как рассчитать применительно к тёплому плинтусу. Скоко чего и куда квадрат на 100

Какой плинтус возьмём для подбора?

А подскажи пжста, встречал такие схемы отопления, но не понимаю, как они работают. Можно ли по такой схеме в доме собирать контур.

Горячая вода попадает в радиатор за счёт конвекции — гравитационный насос.

Это однотрубная система отопления. Такая схема имеет место быть, но она не самая лучшая. Лучше применить двухтрубную систему отопления. Тогда все радиаторы будут примерно одной температуры.

Прежде чем расставлять радиаторы, необходимо посчитать теплопотери, затем подобрать радиаторы отопления и после сделать разводку отопления, посчитать гидравлику и подобрать диаметры этих труб.

Не первый раз замечаю вот такие вещи в расчетах в вводных данных

Температура помещения кухни: +18С

18 градусов в помещении это п. ц дубак, 22 в помещении это комфортная температура для сна под одеялком, а в среднем что называется «уютно» это 24градуса. Конечно все зависит от личных предпочтений и типа отопления, на сколько холодный пол сквозняки там и все такое, но 18.

Есть более упрощенный расчет. Для центральных регионов берется 100 Вт на 1 м2 площади, для угловых комнат добавляют 20 %. Итог: 15,1*100=1510 Вт. Добавляем 20 % — 1812 Вт.

Конечно это больше применимо для кирпичных МКД, но результат как правило не слишком отличается от детального расчета.

Если стена не угловая, то берется половина ее длины. Это где написано?

Я имел ввиду половину смежной стены, как показано на рисунке. Неоднозначно выразился.

Согласно нормам. Что посчитать необходимый минимум. А так в программе можно менять температуру.

Скажите, эти формулы будут корректно работать при плюсовых температурах? Логика мне подсказывает, что должны, но мало ли, есть подводные камни.

Просто у меня следующая ситуация: Есть гараж, в доме. Он очень плохо утеплен. В нём стоят радиаторы отопления, но их мало. В планах его утеплить, но пока нет денег — предыдущей зимой при -20 на улице в гараже было -3, и-за чего дома было очень холодно на 1 этаже, а в комнатах на 2-м этаже, над гаражом пол был очень холодный. Сейчас у меня стоит задача приколхозить утепление на ворота(главный источник потерь тепла) и добавить источники тепла(электрические). Рассчитать потери заранее не представляется возможным, т.к. очень много неизвестных(вроде пары щелей).

Я хочу заранее знать, хватит ли утеплителя, и сколько кВт нужны обогреватели(чтобы не оказаться зимой с замершей задницей), поэтому хочу утеплить гараж сейчас, поставить в нём 1 обогреватель на 3 кВт на сутки и замерить температуру в гараже, на улице, и в помещениях рядом, таким образом, получив примерную величину R(для всей площади), и уже подставив её же в формулу с температурами для зимнего периода, посчитать требуемую мощность отопления и докупить обогреватели, если надо, и сделать утеплитеь лучше

Расчёт и ведётся по температуре СНиП.

Вряд ли, скорее всего установил сколько надо.

Расчет теплопотерь через окна

В данном случае мы имеем дело с трехслойной плоской стенкой. Два слоя стекла имеют толщину 1,5 мм. Ввиду весьма малой толщины стекол их термическим сопротивлением пренебрегаем, а учитываем только воздушную прослойку, толщина которой =0,08 м. Ради облегчения расчета сложный процесс конвективного теплообмена в воздушной прослойке заменяется на элементарное явление теплопроводности, вводя при этом понятие эквивалентного коэффициента теплопроводности экв.

Если разделить экв на коэффициент теплопроводности воздуха , то получим безразмерную величину =экв/, которая характеризует собой влияние конвекции и называется коэффициентом конвекции.

где в-коэффициент объемного расширения воздуха

t — перепад температур t=tвн.п — tнар.п

=0,08 м — толщина воздушной прослойки

g=9,81 м/с 2 — ускорение свободного падения

Допустим, что температура наружной поверхности окна tнар.п= — 20,938 0 С, а температура внутренней поверхности окна tвн.п=4,115 0 С, тогда средняя температура воздушной прослойки.

При этой температуре физические свойства воздуха:

коэффициент теплопроводности воздуха =2,373•10 -2 Вт/(м 0 •С)

коэффициент кинематической вязкости воздуха =12,57•10 -6 м 2 /с

Число Прандтля Pr=0,7112

Произведение критерия Грасгофа на число Прандтля равно:

Эквивалентный коэффициент теплопроводности воздушной прослойки

экв=6,89•2,373•10 -2 =0,163 Вт/(м 0 •С)

Термическое сопротивление воздушной прослойки

Rпр=0,08/0,163=0,49 (м 2 • 0 С)/Вт

Термическое сопротивление у внутренней поверхности окна

Внутри здания всегда наблюдается естественная циркуляция воздуха. Известно, что конвективный коэффициент теплоотдачи при естественной циркуляции воздуха:

Найдем эти критерии при температуре воздуха в помещении tвн=25 0 С и высоте окна l=3 м.

где в-коэффициент объемного расширения воздуха

t — перепад температур t=tвн — tвн.п

l=3 м — высота окна

При температуре tвн=25 0 С коэффициент кинематической вязкости воздуха

Ускорение силы тяжести g=9,81 м/с 2

Критерий Прандтля при tвн=25 0 С равен Pr=0,7036

Произведение критерия Грасгофа на число Прандтля равно:

При (Gr•Pr)10 9 имеем турбулентный режим

Определим конвективный коэффициент теплоотдачи при естественной

где l — высота окна.

Коэффициент теплопроводности воздуха при tвн=25 0 С =2,566•10 -2 Вт/(м 2 • 0 С)

Термическое сопротивление на внутренней поверхности стенки

Термическое сопротивление на наружной поверхности здания

где к.нар — конвективный коэффициент теплоотдачи

л — коэффициент теплоотдачи излучением

Пусть температура наружной поверхности стены tнар.ст= — 20.938 0 С

где W — скорость ветра, W=15 м/с

L — высота окна, L=3 м

Физические свойства воздуха при tнар= — 22 0 С:

коэффициент кинематической вязкости воздуха =11,704•10 -6 м 2 /с

коэффициент теплопроводности воздуха =2,264•10 -2 Вт/(м 2 •С)

Число Прандтля Pr=0,7174

При Re > 5×10 5 критерий Нуссельта можно определить по формуле:

где С=5,7 Вт/(м2•К4) — коэффициент излучения абсолютно — черного тела =0,937 — степень черноты гладкого стекла

Проверка наружной и внутренней поверхности окна

Общее термическое сопротивление

R=0,252+0,49+0,021=0,763 (м 2 •С)/Вт

Температура наружной поверхности стенки

t — расхождение в заданной и полученной температуре не превышает 0,5 0 С, следовательно дальнейших приближений делать не надо.

t — расхождение в заданной и полученной температуре не превышает 0,5 0 С, следовательно дальнейшие приближения делать не надо.

Общие теплопотери для цеха

где Fок — поверхность окон цеха; Fок=90 м 2

t — перепад температур; t=25 — (-22)=47 0 С

R — общее термическое сопротивление; R=1,138 (м 2 •С)/Вт

Общие теплопотери через окна цеха составляют Qок=4,6 кВт

Формулы расчета теплопотерь дома

Первый шаг в организации отопления частного дома — расчет теплопотерь. Цель этого расчета — выяснить, сколько тепла уходит наружу сквозь стены, полы, кровлю и окна (общее название — ограждающие конструкции) при самых суровых морозах в данной местности. Зная, как рассчитать теплопотери по правилам, можно получить довольно точный результат и приступить к подбору источника тепла по мощности.

Базовые формулы

Чтобы получить более-менее точный результат, необходимо выполнять вычисления по всем правилам, упрощенная методика (100 Вт теплоты на 1 м² площади) здесь не подойдет. Общие потери теплоты зданием в холодное время года складываются из 2 частей:

  • теплопотерь через ограждающие конструкции;
  • потерь энергии, идущей на нагрев вентиляционного воздуха.

Базовая формула для подсчета расхода тепловой энергии через наружные ограждения выглядит следующим образом:

Q = 1/R х (tв — tн) х S х (1+ ∑β). Здесь:

  • Q — количество тепла, теряемого конструкцией одного типа, Вт;
  • R — термическое сопротивление материала конструкции, м²°С / Вт;
  • S — площадь наружного ограждения, м²;
  • tв — температура внутреннего воздуха, °С;
  • tн — наиболее низкая температура окружающей среды, °С;
  • β — добавочные теплопотери, зависящие от ориентации здания.

Термическое сопротивление стен либо кровли здания определяется исходя из свойств материала, из которого они сделаны, и толщины конструкции. Для этого используется формула R = δ / λ, где:

Если стена возведена из 2 материалов (например, кирпич с утеплителем из минваты), то термическое сопротивление рассчитывается для каждого из них, а результаты суммируются. Уличная температура выбирается как по нормативным документам, так и по личным наблюдениям, внутренняя — по необходимости. Добавочные теплопотери — это коэффициенты, определенные нормами:

  1. Когда стена либо часть кровли повернута на север, северо-восток или северо-запад, то β = 0,1.
  2. Если конструкция обращена на юго-восток или запад, β = 0,05.
  3. β = 0, когда наружное ограждение выходит на южную или юго-западную сторону.

Порядок выполнения вычислений

Чтобы учесть все тепло, уходящее из дома, необходимо сделать расчет теплопотерь помещения, причем каждого по отдельности. Для этого производятся замеры всех ограждений, соседствующих с окружающей средой: стен, окон, крыши, пола и дверей.

Важный момент: обмеры следует выполнять по внешней стороне, захватывая углы строения, иначе расчет теплопотерь дома даст заниженный расход тепла.

Окна и двери измеряются по проему, который они заполняют.

По результатам замеров рассчитывается площадь каждой конструкции и подставляется в первую формулу (S, м²). Туда же вставляется значение R, полученное делением толщины ограждения на коэффициент теплопроводности строительного материала. В случае с новыми окнами из металлопластика величину R вам подскажет представитель фирмы-установщика.

В качестве примера стоит провести расчет теплопотерь через ограждающие стены из кирпича толщиной 25 см, площадью 5 м² при температуре окружающей среды -25°С. Предполагается, что внутри температура составит +20°С, а плоскость конструкции обращена к северу (β = 0,1). Сначала нужно взять из справочной литературы коэффициент теплопроводности кирпича (λ), он равен 0,44 Вт/(м°С). Затем по второй формуле вычисляется сопротивление передаче тепла кирпичной стены 0,25 м:

R = 0,25 / 0.44 = 0,57 м²°С / Вт

Чтобы определить теплопотери помещения с этой стенкой, все исходные данные надо подставить в первую формулу:

Q = 1 / 0,57 х (20 — (-25)) х 5 х (1 + 0,1) = 434 Вт = 4.3 кВт

Если в комнате имеется окно, то после вычисления его площади следует таким же образом определить теплопотери сквозь светопрозрачный проем. Такие же действия повторяются относительно полов, кровли и входной двери. В конце все результаты суммируются, после чего можно переходить к следующему помещению.

Учет тепла на подогрев воздуха

Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо. Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:

Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час. Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность. Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:

Температура воздушной смеси, ºС — 25 — 20 — 15 — 10 — 5 + 5 + 10
Плотность, кг/м 3 1,422 1,394 1,367 1,341 1,316 1,290 1,269 1,247

Пример. Необходимо просчитать вентиляционные теплопотери здания, куда поступает 500 м³ в час с температурой -25°С, внутри поддерживается +20°С. Сначала определяется массовый расход:

m = 500 х 1,422 = 711 кг/ч

Подогрев такой массы воздуха на 45°С потребует такого количества теплоты:

Qвозд = 0.28 х 711 х 45 = 8957 Вт, что примерно равно 9 кВт.

По окончании расчетов результаты тепловых потерь сквозь наружные ограждения суммируются с вентиляционными теплопотерями, что дает общую тепловую нагрузку на систему отопления здания.

Представленные методики вычислений можно упростить, если формулы ввести в программу Excel в виде таблиц с данными, это существенно ускорит проведение расчета.

Читать еще:  Как снять фольгу с окна
Ссылка на основную публикацию
Adblock
detector